Министерство науки и высшего образования Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук (ИОС УрО РАН)

РАБОЧАЯ ПРОГРАММА

элемента ООП подготовки научно-педагогических кадров в аспирантуре

СТРОЕНИЕ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Направление подготовки:

04.06.01 Химические науки

Направленность:

Органическая химия

Квалификация:

Исследователь. Преподаватель-исследователь

Форма обучения:

Очная

Раздел ООП:

Блок Б 1. «Дисциплины (модули)». Вариативная часть

ФЕДЕРАЛЬНОЕ АГЕНТСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук (ИОС УрО РАН)

РАБОЧАЯ ПРОГРАММА

элемента ООП подготовки научно-педагогических кадров в аспирантуре

СТРОЕНИЕ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Направление подготовки:

04.06.01 Химические науки

Направленность:

Органическая химия

Квалификация:

Исследователь. Преподаватель-исследователь

Форма обучения:

Очная

Раздел ООП:

Блок Б 1. «Дисциплины (модули)». Вариативная часть

Федеральное государственное бюджетное учреждение науки Институт органического синтеза им.И.Я. Постовского Уральского отделения Российской академии наук (ИОС УрО РАН)

ОДОБРЕНО

Ученым советом ИОС УрО РАН «22» апреля 2015 г. Протокол № 6

УТВЕРЖДАЮ

Директор ИОС УрО РАН академик РАН _____ В.Н. Чарушин «22» апреля 2015 г. Приказ Ne27-2

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Строение и реакционная способность органических соединений

Шифр и название направления подготовки 04.06.01 Химические науки

Направленность 02.00.03 Органическая химия

Квалификация: «Исследователь. Преподаватель-исследователь»

Форма обучения: Очная (Заочная)

Статус дисциплины:

Блок Б 1. «Дисциплины (модули)». Вариативная часть

Автор:

Старший научный сотрудник ИОС УрО РАН, к.х.н., доцент

А.В. Пестов

Программа дисциплины составлена на основании федерального государственного образовательного стандарта к основной образовательной программе высшего образования — программе подготовки научно-педагогических кадров в аспирантуре по направлению 04.06.01 «Химические науки», утвержденного приказом Минобрнауки России от 30.07.2014 № 869, с учетом приказа Минобрнауки России от 30.04.2015 № 464 «О внесении изменений в федеральные государственные образовательные стандарты высшего образования (уровень кадров высшей квалификации)».

Автор-разработчик:

1. Пестов А.В., к.х.н., доцент, старший научный сотрудник ИОС УрО РАН

АННОТАЦИЯ ПРОГРАММЫ

Программа предназначена для аспирантов, обучающихся по образовательным программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре в соответствии с федеральным государственным образовательным стандартом.

Дисциплина «Строение и реакционная способность органических соединений» относится к вариативной части Блока 1 «Дисциплины (модули)» основной образовательной программы (далее – ООП) аспирантуры и является дисциплиной, обязательной для освоения.

Рабочая программа соответствует:

- паспорту научной специальности 02.00.03 (направленность Органическая химия),
- учебному плану ООП аспирантской подготовки.

Освоение дисциплины осуществляется на первом курсе (2 семестр) обучения в соответствии с графиком учебного процесса.

Общая трудоемкость дисциплины составляет 3 з.е. (108 час.), в том числе:

- аудиторная работа 1,5 з.е. (54 ч), представлена лекционными (18 ч/0.5 з.е.), практическими (18 ч/0.5 з.е.) и лабораторными (18 ч/0.5 з.е.) занятиями;
 - самостоятельная деятельность аспиранта 1,5 з.е. (54 ч).

Цель изучения дисциплины — формирование у аспирантов системы углубленных знаний о взаимосвязи строения и реакционной способности органических соединений, понимания роли молекулярных орбиталей, их превращений в ходе реакции.

Задачи дисциплины — обеспечить необходимый объем фундаментальных теоретических знаний о строении и свойствах органических материалов и практических навыков работы на современной научной аппаратуре, применяемой при проведении химических экспериментов, аналитических и физико-химических исследований в области органического синтеза.

Систематизирование материала по дисциплине происходит в рамках девяти разделов:

- Молекулярные орбитали и органические реакции;
- Делокализация и сопряжение. Ароматичность;
- Кислотность, основность;
- Нуклеофильность;
- Равновесие и скорость реакции;
- Пространственное строение и реакционная способность;
- Перициклические реакции;
- Катализ в реакциях кросс-сочетания;
- Изучение механизма реакций.

Виды контроля:

- текущий зачет (2 семестр);
- итоговый в рамках государственного экзамена (8 семестр).

1 ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Цель изучения дисциплины — формирование у аспирантов системы углубленных знаний о взаимосвязи строения и реакционной способности органических соединений, понимания роли молекулярных орбиталей, их превращений в ходе реакции.

Задачи дисциплины — обеспечить необходимый объем фундаментальных теоретических знаний о строении и свойствах органических материалов и практических навыков работы на современной научной аппаратуре, применяемой при проведении химических экспериментов, аналитических и физико-химических исследований в области органического синтеза.

2 ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ АСПИРАНТА, ЗАВЕРШИВШЕГО ИЗУЧЕНИЕ ДИСЦИПЛИНЫ

2.1 Компетенции, формируемые в результате освоения дисциплины:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1);
- способность к самостоятельному проведению научно-исследовательской работы и получению научных результатов, удовлетворяющих установленным требованиям к содержанию диссертаций на соискание ученой степени кандидата наук по специальности (направленности) 02.00.03 Органическая химия (ПК-1).

2.2. Требования к результатам освоения дисциплины:

В результате освоения дисциплины аспирант должен знать:

- методы критического анализа и оценки современных научных достижений, а также методы генерирования новых идей при решении исследовательских и практических задач
 - современное состояние науки в области органической химии; *vметь*:
- анализировать альтернативные варианты решения исследовательских и практических задач и оценивать потенциальные выигрыши/проигрыши реализации этих вариантов
- выбирать и применять в профессиональной деятельности экспериментальные и расчетно-теоретические методы исследования
- представлять научные результаты в виде публикаций в рецензируемых научных изданиях;

владеть:

- навыками анализа методологических проблем, возникающих при решении исследовательских и практических задач, в том числе в междисциплинарных областях;
- навыками критического анализа и оценки современных научных достижений и результатов деятельности по решению исследовательских и практических задач, в том числе в междисциплинарных областях
- навыками планирования научного исследования, анализа получаемых результатов и формулировки выводов
- методами планирования, подготовки, проведения НИР, анализа полученных данных, формулировки выводов и рекомендаций.

2.3 Связь с последующими элементами ООП

Знания и навыки, полученные аспирантами при изучении дисциплины «Строение и реакционная способность органических соединений», необходимы для выполнения аспирантами элементов ООП Блока 3 «Научные исследования»: научно-исследовательская деятельность и подготовка научно-квалификационной работы.

3 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 ВИДЫ УЧЕБНОЙ РАБОТЫ И КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

	Трудоемкость, час/з.е.			
Виды учебной работы и контроля	Всего	По учебным семестрам		
		2	7	
Аудиторные занятия:	54/1.5	54/1.5		
Лекции	18/0.5	18/0.5		
Практические занятия	18/0.5	18/0.5		
Лабораторные занятия	18/0.5	18/0.5		
Самостоятельная работа студентов	54/1.5	54/1.5		
Вид контроля:	-	-		
текущий	-	Зачет		
промежуточный	-	-		
итоговый	-	_	ГИЭ	
Общая трудоемкость по учебному плану	108/3.0	108/3.0		

2.2 РАЗДЕЛЫ ДИСЦИПЛИНЫ И ВИДЫ ЗАНЯТИЙ

№ п/п	Название раздела дисциплины	Объем часов / зачетных единиц				
		Всего	лекции	практич еские занятия	лаборато рные работы	Самостоя тель ная работа
1	Применение метода молекулярных орбиталей для описания органических веществ	14/0,39	2/0.056	2/0.056	6/0.166	4/0.111
2	Мезомерный эффект	11/0.306	2/0.056	1/0.028	-	8/0.222
3	Ароматичность	8/0.222	2/0.056	1/0.028	-	5/0.139
4	Кислотность, основность. Нуклеофильность	18/0.5	2/0.056	4/0.111	6/0.166	6/0.166

5	Влияние пространственного строения на реакционную способность	10/0,278	2/0.056	1/0.028	-	7/0.194
6	Перициклические реакции	10/0.278	2/0.056	2/0.056	-	6/0.166
7	Равновесие и скорость реакции	14/0.389	2/0.056	4/0.111	-	8/0.222
8	Механизмы реакций	7/0.194	2/0.056	1/0.028	-	4/0.111
9	Катализ реакций между органическими веществами	16/0.444	2/0.056	2/0.056	6/0.166	6/0.166
	Итого:	108/3,0	18/0.5	18/0.5	18/0.5	54/1.5

3.3 СОДЕРЖАНИЕ РАЗДЕЛОВ ЛЕКЦИОННОГО КУРСА

Применение метода молекулярных орбиталей для описания органических веществ.

Атомные и молекулярные орбитали, гибридизация, образование связи, электрофильно-нуклеофильные взаимодействия, механизм реакции. Нуклеофильное присоединение к карбонильной группе: взаимодействие граничных орбиталей, траектория Бюрги-Дуница

Мезомерный эффект.

Делокализация и сопряжение. Молекулярные орбитали этилена, аллильного катиона, аниона и радикала, карбоксилат-аниона, нитрогруппы, амидной группы, бутадиена, акролеина.

Ароматичность.

Структура и энергия молекулярных орбиталей шести-, пяти-, четырех-, восьмичленных ароматических циклов, ароматичность гетероциклов.

Кислотность, основность. Нуклеофильность.

Понятие кислотности, pK_a. Влияние строения на кислотность: электроотрицательность атомов, прочность А-Н связи, гибридизация, делокализация отрицательного заряда в анионе, сопряжение, электронодонорные группировки. Понятие основности, рКан. Молекулярное строение и основность: электроотрицательность, доступность неподеленной электронной пары (энергия ВЗМО, влияние заместителей и гибридизации), стабилизация образующегося катиона (сольватация и делокализация), ароматичности примере влияние на аминов, амидинов, гуанидинов гетероциклических аналогов.

Нуклеофильность в реакциях нуклеофильного замещения у карбонильной группы и у насыщенного атома углерода (S_N2). Связь нуклеофильности и нуклеофугности с основностью. Сопряженное нуклеофильное присоединение, жесткие и мягкие нуклеофилы, кинетический и термодинамический контроль.

Влияние пространственного строения на реакционную способность.

Конформационный анализ. Конформация и конфигурация. Барьер вращения. Конформации этана, пропана, бутана. Конформации циклов, циклогексан, влияние заместителей на конформации циклогексана, реакционная способность аксиально- и экваториально замещенных циклогексанов.

Перициклические реакции.

Реакции Дильса-Альдера, граничные молекулярные орбитали, правило Вудворда-Гоффмана, регио- и стереоселективность. Диполярное циклоприсоединение. Сигматропные перегруппировки. Молекулярные орбитали в [3,3] сигматропной перегруппировке. [1,5] Сигматропный сдвиг водорода. Электроциклические реакции, дисротаторный и конротаторный механизмы.

Равновесие и скорость реакции.

Константа равновесия и энергия реагентов и продуктов реакции. Влияние энтропии на равновесие. Кинетика, константа скорости реакции и энергия активации. Катализ и кинетика. Кинетические и термодинамические продукты. Влияние растворителя.

Механизмы реакций.

Основные типы химических реакций: S_N , E, A_N , S_E , S_NAr . Порядок реакции. Константы Гаммета заместителей и реакций, связь с механизмом. Изотопный эффект. Изотопные метки при изучении механизма на примере замещения при карбонильной группе и ANRORC реакции.

Катализ реакций между органическими веществами.

Общий кислотно-основный катализ. Биомиметический катализ. Координационный катализ. Органические соединения переходных металлов. Стабильность, правило 18 (16) электронов. Особенности связей. Окислительное присоединение, восстановительное элиминирование, миграционное включение. Катализируемые палладием(0) реакции гомогенного катализа, каталитический цикл: реакции Хека, Стилле, Сузуки, Соногашира.

3.4 ПРАКТИЧЕСКИЕ (СЕМИНАРСКИЕ) ЗАНЯТИЯ

Раздел дисциплины	Тема	Объем учебного
	практического занятия	времени,
		час/ зачетные единицы
Применение метода	Описание молекулярных	2/0.056
молекулярных орбиталей	орбиталей в органических	
для описания органических	веществах	
веществ.		
Мезомерный эффект.	Описание электронного	1/0.028
	строения органических	
	молекул	
Ароматичность.	Описание молекулярных	1/0.028
_	орбиталей ароматических	
	систем	
	Зависимость величины рКа	4/0.111
Кислотность, основность.	от растворителя и строения	
Нуклеофильность.	органических соединений	
	Конформационный анализ.	1/0.028
Влияние пространственного		
строения на реакционную		
способность.		
	Взаимодействие	2/0.056
Перициклические реакции	граничных орбиталей	
	Константа скорости	4/0.111
Равновесие и скорость	реакции. Константа	
реакции.	равновесия	
Механизмы реакций	Влияние строения	1/0.028
	органического вещества на	
	особенность реализации	
	механизма	

	Особенности	2/0.056
Катализ реакций между	координационного	
органическими веществами	катализа	
Всего		18/0.5

3.5. ЛАБОРАТОРНЫЕ ЗАНЯТИЯ

Раздел дисциплины	Наименование работы	Объем учебного времени, час/зачетные единицы
Применение метода	Описание молекулярных	
молекулярных	орбиталей в органических	6/0.166
орбиталей для описания	веществах с помощью	
органических веществ.	спектроскопических	
	методов	
Кислотность,	Определение величины	
основность.	рКа в воде и неводных	6/0.166
Нуклеофильность.	растворителях	
Катализ реакций между	Влияние природы	6/0.166
органическими	металлоцентра на катализ	
веществами	реакции	
	переэтерификации	
Всего		18 / 0.5

3.6 САМОСТОЯТЕЛЬНАЯ РАБОТА

Изучение учебного материала, перенесенного с аудиторных занятий на самостоятельную проработку.

Выявление информационных ресурсов в научных библиотеках и сети Internet по следующим направлениям:

- библиография по проблемам строения и реакционной способности органических соединений;
- публикации (в том числе электронные) источников по проблемам строения и реакционной способности органических соединений;
- научно-исследовательская литература по актуальным проблемам строения и реакционной способности органических соединений.

Конспектирование и реферирование первоисточников и научно-исследовательской литературы по тематическим блокам.

- 3.7 КОНТРОЛЬНЫЕ РАБОТЫ НЕ ПРЕДУСМОТРЕНЫ.
- **3.8 СПИСОК ВОПРОСОВ ДЛЯ ПРОМЕЖУТОЧНОГО ТЕСТИРОВАНИЯ** НЕ ПРЕДУСМОТРЕН.
 - **3.9 ТЕМАТИКА РЕФЕРАТОВ** НЕ ПРЕДУСМОТРЕНА.
- **3.10 АКТИВНЫЕ МЕТОДЫ ОБУЧЕНИЯ (ДЕЛОВЫЕ ИГРЫ, НАУЧНЫЕ ПРОЕКТЫ)** НЕ ПРЕДУСМОТРЕНЫ.

4 ОРГАНИЗАЦИЯ КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- **4.1 ТЕКУЩИЙ КОНТРОЛЬ** в рамках собеседования по итогам освоения программы дисциплины, зачет.
 - **4.2 ПРОМЕЖУТОЧНЫЙ КОНТРОЛЬ -** НЕ ПРЕДУСМОТРЕН.
 - 4.3 ИТОГОВЫЙ КОНТРОЛЬ в рамках государственного итогового экзамена.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

При текущем контроле применяется система «зачтено/не зачтено» с учетом критериев, представленных в табл.:

Оценка	Критерии
Зачтено	Аспирант показал творческое отношение к обучению, в совершенстве или в достаточной степени овладел знаниями, показал все (как минимум основные) требуемые умения и навыки
Не зачтено	Аспирант не владеет основными умениями и навыками

Оценка уровня знаний при итоговом контроле осуществляется в соответствии с положением о Государственной итоговой аттестации.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

6.1 ОСНОВНАЯ ЛИТЕРАТУРА

7 ЛИТЕРАТУРА

7.1 РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Хаускрофт К., Констэбл Э. Современный курс общей химии. Т1. М.: Мир, 2002, 540 с.
- 2. Кери Ф., Сандберг Р. Углубленный курс органической химии : в 2 кн. М. : Химия, 1981.
- 3. Марч Дж. Органическая химия: реакции, механизмы и структура: углубленный курс для ун-тов и хим. вузов: в 4 т. М.: Мир, 1987–1988.
- 4. Общая органическая химия : в 12 т. / под общ. ред. Д. Бартона, У. Д. Оллиса. М. : Химия, 1981–1988.
- 5. Органические растворители / А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс. М. : Изд-во иностр. лит., 1956.
- 6. Реутов О. А. Органическая химия / учебник для вузов : в 4 ч. 3-е изд. М. : БИНОМ. Лаборатория знаний, 2007 2010. Ч. 1. 2007. 566 с.; Ч. 2. 2007. 622 с.; Ч. 3. 2010. 543, [1] с. ; Ч. 4. 2010. 725 с.

7.2. ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. *Агрономов А. Е.* Избранные главы органической химии: учеб. пособие для вузов. 2-е изд., перераб. и доб. М.: Химия, 1990.
- 2. Беккер Γ ., Бергер B., Домике Γ . Органикум : практикум по органической химии : в 2 т. М. : Мир, 1979.
- 3. Михайлов И. Е. Молекулярные перегруппировки циклополиенов : монография / И. Е. Михайлов ; РАН, Южный науч. центр [и др.]. М. : Наука, 2008. 227 с.
- 4. Минкин В. И. Теория строения молекул (электронные оболочки) : учеб. пособие для вузов / В. И. Минкин, Б. Я. Симкин, Р. М. Миняев. М. : Высшая школа, 1979. 407 с.

7.3 УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ Не предусмотрено.

6.2 ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. Агрономов А.Е. Избранные главы органической химии: учеб. пособие для вузов. 2-е изд., перераб. и доб. М.: Химия, 1990.
- $2.\ Aгрономов\ A.E.\ Cборник$ задач по органической химии: учеб. пособие. М.: Изд-во МГУ, 2000.

- 3. Беккер Γ ., Бергер B., Домике Γ . Органикум: практикум по органической химии: в 2 т. М.: Мир, 1979.
- 4. *Вацуро К.В.*, *Мищенко Г.Л.* Именные реакции в органической химии: справочник. М.: Химия, 1976.
 - 5. *Гордон А.*, *Форд Р*. Спутник химика. М.: Мир, 1976.

6.3 МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

- 1. Вишьков А.А., Ятлук Ю.Г., Пестов А.В. Номенклатурные правила ациклических, ароматических, гетероциклических углеводородов и их производных. Екатеринбург: Изд-во Урал. ун-та, 2008. 172 с.
- 2. Вишьков А.А., Пестов А.В. Органическая химия. Основные понятия. Екатеринбург: Изд-во Урал. ун-та, 2012.-188 с.

6.4 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ИНТЕРНЕТ-РЕСУРСЫ

Программное обеспечение

Программы пакета Microsoft Office;

Пакет программ для квантово-химических расчетов Orca 2.8.0

Визуализатор пространственной структуры и молекулярных орбиталей Chemcraft

Электронные образовательные ресурсы

Информационные сервисы: Sciencedirect, Elibrary, Chemtube 3D.

Электронные ресурсы Центральной научной библиотеки (ЦНБ) УрО РАН (30 точек доступа) - http://cnb.uran.ru/

Механизмы органических реакций. www.chemtube3d.com

Периодическая таблица элементов. www.ptable.com

Интерактивное приложение к учебнику Keeler J., Wothers P. Chemical structure and reactivity. www.oup.com/uk/orc/bin/9780199289301/01student/weblinks/

Базы данных, информационно-справочные и поисковые системы

Химическая энциклопедия (сайт www.xumuk.ru)

http://ru.wikipedia.org – Именные реакции в органической химии

http://en.wikibooks.org

http://www.alhimikov.net – Электронный учебник по органической химии

http://www.chemistry.ssu.samara.ru/chem4/link211.htm

http://stavrop.fcior.edu.ru/card/1339/laboratornaya-rabota-konstruirovanie-mehanizmov-himicheskih-reakciy-po-teme-kislorodosoderzhashie-or.html - Федеральный центр образовательных ресурсов

http://nehudlit.ru/books.

7 МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (Современные приборы, установки (стенды), необходимость специализированных лабораторий и классов)

Институт располагает:

- специально оборудованным помещением для проведения лекционных занятий;
- современным приборным парком для анализа состава и изучения структуры и свойств органических соединений, включая:
 - ЯМР, хроматомасс-спектрометрию, ИК-, КР и УФ- спектроскопию
 - высокоэффективную жидкостную и газо-жидкостную хроматографию
 - рентгеноструктурный анализ
 - поляриметрию
 - автоматического СNH анализа
 - проведения реакций при высоком давлении

и др.

Центр коллективного пользования «Спектроскопия и анализ органических соединений» института (ЦКП САОС)), имеет Аттестат признания компетентности испытательной лаборатории (центра) № 0011, рег. № РОСС RU.В503.04НЖ00.66.04.0009.

Группа элементного анализа ИОС УрО РАН признана компетентной в целях выполнения работ по сертификационным испытаниям в Системе добровольной сертификации нанопродукции. С 2009 г. группа входит в состав Испытательного центра веществ, материалов и продукции наноиндустрии в УрФО.

В институте:

- создана локальная сеть, объединяющая 100 компьютеров, с выходом в Интернет;
- внедрена система корпоративной электронной почты на основе MS Exchange 2003, с возможностью удаленного доступа;
- предоставлены для пользования принтеры, сканеры и ксероксы, что способствует эффективной самостоятельной деятельности аспирантов при освоении дисциплины.

Министерство науки и высшего образования Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук (ИОС УрО РАН)	Рабочая программа
Рабочая программа дисциплины «Строение и реакционная способность органических соединений» при обучении по образовательной программе высшего образования — программе подготовки научно-педагогических кадров в аспирантуре ИОС УрО РАН Направление 04.06.01 — Химические науки	Редакция 2018 г.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

No	Описание изменений	Основание	Дата вступления в
редакции			действие
документа			
2	В связи с внесением изменений в отдельные государственные нормативные документы, регулирующие процесс организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре, в течение 2016-2017 учебного года	Приказ директора института от 22.09.2017 №71	В соответствии с приказом директора института от 22.09.2017 №71
3	В соответствии с распоряжениями Правительства РФ № 1055-р от 30.05.2018 г. «Об упразднении ФАНО» и № 1293-р от 27.06.2018 г. «О перечне организаций, подведомственных Минобрнауки»	Приказ директора института от 10.12.2018 №100	В соответствии с приказом директора института от 10.12.2018 №100